Five-Membered 2,3-Dioxo Heterocycles: XLIV.* Reaction of 3-Aroyl-1,2,4,5-tetrahydropyrrolo[1,2-a]-quinoxaline-1,2,4-triones with o-Phenylenediamines**

A. N. Maslivets ${ }^{1}$, I. V. Mashevskaya ${ }^{1}$, S. V. Kol'tsova ${ }^{2}$, A. V. Duvalov ${ }^{1}$, and V. P. Feshin ${ }^{2}$
${ }^{1}$ Perm State University, ul. Bukireva 15, Perm, 614600 Russia
e-mail: info@psu.ru
${ }^{2}$ Institute of Technical Chemistry, Ural Division, Russian Academy of Sciences, Perm, Russia

Received March 11, 2001

Abstract

The reaction of (Z)-3-phenacylidene-1,2,3,4-tetrahydroquinoxalin-2-ones with oxalyl chloride gives 3 -aroyl-1,2,4,5-tetrahydropyrrolo[1,2-a]quinoxaline-1,2,4-triones which react with o-phenylenediamine to afford 8 -aryl- $6,7,9,14,15,16$-hexahydroquinoxalino[1,2-a]pyrrolo[2,3-b][1,5]benzodiazepine-6,7,15-triones.

The structure of products formed by reaction of o-phenylenediamine with substituted 2,3-dihydropyr-role-2,3-diones fused to aza heterocycles through the a bond is determined mainly by the substituent in position 4 of the dihydropyrrole ring. Reactions of o-phenylenediamine with 4 -unsubstituted, 4-dialkyl-carbamoyl-, and 4-phenyl-2,3-dihydropyrrole-2,3-diones [2-4] fused to isoquinoline [2,3], phenanthridine [3], or 1,3-oxazine ring [4] begin with nucleophilic attack on the carbonyl group in position 2 (path a) or 3 (path b) of the pyrrole ring with subsequent recyclization either to quinoxalin-2-ones and then to pyrroloquinoxalines (path a) or to pyrrolobenzimidazoles (path b) [2-4]. By contrast, 4-aroyl-2,3-di-hydropyrrole-2,3-diones, fused through the a bond to 2-oxo-1,4-benzoxazine ring, react with o-phenylenediamine via primary nucleophilic addition at C^{5} of the pyrrole ring, followed by recyclization with opening of the benzoxazine ring [5].

In continuation of our studies on nucleophilic transformations of 4-acyl-2,3-dihydropyrrole-2,3-diones, fused through the a bond to 2-oxoquinoxaline moiety, namely 3 -aroyl-1,2,4,5-tetrahydropyrrolo $1,2-a$]quino-xaline-1,2,4-triones $\mathbf{I a}-\mathbf{I g}$ [6], the latter were brought into reaction with o-phenylenediamine. Taking into

[^0]account our previous data on the direction of primary nucleophile addition to compounds \mathbf{I} (at C^{5} of the pyrrole ring) and on reactions of monocyclic substituted 4-acyl-2,3-dihydropyrrole-2,3-diones with the same nucleophile [7], we expected formation of different products. Therefore, we performed a detailed study of the reaction, and its results were interpreted with the aid of quantum-chemical methods.

Compounds Ic, Id, and Ig were synthesized by the procedure described in [1] from (Z)-3-phenacylidene-1,2,3,4-tetrahydroquinoxalin-2-ones IIc, IId, and IIg, respectively, and oxalyl chloride. 3-Aroyl-1,2,4,5-tetrahydropyrrolo[1,2-a]quinoxaline-1,2,4-triones Ia-Ig reacted with o-phenylenediamine in anhydrous dioxane on heating for a short time ($1-5 \mathrm{~min}$) under reflux. The products were 8 -aryl- $6,7,9,14,15,16$-hexa-hydroquinoxalino[1,2- a]pyrrolo[2,3- b][1,5]benzodi-azepine-6,7,15-triones IIIa-IIIg (Scheme 1, Table 1) which were formed in almost quantitative yields via successive nucleophilic attack by the amino groups of the reagent on C^{5} and carbonyl carbon atom of the aroyl fragment in position 4 of the pyrrole ring. The same ptoducts were also obtained when the reaction was carried out at $0^{\circ} \mathrm{C}$, and their yield did not change to an appreciable extent.

Compounds IIIa-IIIg are dark red high-melting crystalline substances, which are almost insoluble in common organic solvents, poorly soluble in DMF and DMSO, and insoluble in water. They give a negative

Scheme 1.

$\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}(\mathbf{a}) ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}(\mathbf{b}) ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{OMe}(\mathbf{c}) ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{NO}_{2}(\mathbf{d}) ; \mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H}$, $\mathrm{R}^{2}=\mathrm{Ph}(\mathbf{e}) ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}(\mathbf{f}) ; \mathrm{R}^{1}=\mathrm{NO}_{2}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}(\mathbf{g})$.

Table 1. Yields, melting points, and elemental analyses of compounds Ic, Id, Ig, IIc, IId, IIg, and IIIa-IIIj

Comp. no.	Yield, \%	$\mathrm{mp},{ }^{\circ} \mathrm{C}$ (solvent)	Found, \%			Formula	Calculated, \%		
			C	H	N		C	H	N
Ic	92	203-205 (dichloroethane)	65.69	3.41	7.99	$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5}$	65.52	3.45	8.05
Id	87	290-292 (dichloroethane)	59.78	2.42	11.04	$\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{6}$	59.50	2.48	11.57
Ig	83	267-269 (dichloroethane)	59.25	2.43	11.17	$\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{6}$	59.50	2.48	11.57
IIc	84	238-240 (DMSO)	69.40	4.73	9.31	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$	69.45	4.80	9.53
IId	75	298-299 (DMSO)	62.04	3.37	13.41	$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$	62.20	3.59	13.59
IIg	82	294-296 (DMSO)	62.97	3.48	13.04	$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$	62.20	3.59	13.59
IIIa	95	385-387 (DMF)	70.76	3.90	13.62	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$	70.75	3.93	13.64
IIIb	89	369-370 (DMF)	71.27	4.24	13.17	$\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$	71.25	4.26	13.19
IIIC	92	312-314 (DMSO)	68.45	3.20	12.87	$\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$	68.02	3.23	12.90
IIId	85	328-330 (DMSO)	64.63	3.01	15.06	$\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5}$	64.66	3.02	15.09
IIIe	93	317-319 (DMF)	74.51	4.12	11.47	$\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$	74.53	4.14	11.49
IIIf	80	315-317 (DMSO)	74.67	4.40	11.23	$\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}$	74.70	4.42	11.25
IIIg	90	338-340 (DMF)	64.64	2.99	15.07	$\mathrm{C}_{25} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{5}$	64.66	3.02	15.09
IIIh	87	302-304 (DMSO)	63.56	3.29	15.43	$\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5}$	63.58	3.31	15.45
IIII	92	299-301 (DMSO)	69.12	2.95	13.00	$\mathrm{C}_{31} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{5}$	69.14	2.97	13.01
IIIj	79	305-307 (DMSO)	63.79	2.55	14.40	$\mathrm{C}_{31} \mathrm{H}_{15} \mathrm{~N}_{6} \mathrm{O}_{7}$	63.81	2.57	14.41

Table 2. IR and ${ }^{1} \mathrm{H}$ NMR spectra of compounds Ic, Id, Ig, IIc, IId, IIg, and IIIa-IIIg

Comp. no.	IR spectrum, $v, \mathrm{~cm}^{-1}$	${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm
Ic	$\begin{gathered} 3080\left(\mathrm{~N}^{5}-\mathrm{H}\right), 1774\left(\mathrm{C}^{1}=\mathrm{O}\right), 1742\left(\mathrm{C}^{2}=\mathrm{O}\right), \\ 1698\left(\mathrm{C}^{4}=\mathrm{O}\right), 1636(3-\mathrm{C}=\mathrm{O}) \end{gathered}$	
Id	$\begin{gathered} 3070\left(\mathrm{~N}^{5}-\mathrm{H}\right), 1783\left(\mathrm{C}^{1}=\mathrm{O}\right), 1740\left(\mathrm{C}^{2}=\mathrm{O}\right), \\ 1699\left(\mathrm{C}^{4}=\mathrm{O}\right), 1666(3-\mathrm{C}=\mathrm{O}) \end{gathered}$	
Ig	$\begin{gathered} 3115\left(\mathrm{~N}^{5}-\mathrm{H}\right), 1789\left(\mathrm{C}^{1}=\mathrm{O}\right), 1741\left(\mathrm{C}^{2}=\mathrm{O}\right), \\ 1660\left(\mathrm{C}^{4}=\mathrm{O}\right), 1625(3-\mathrm{C}=\mathrm{O}) \end{gathered}$	
IIc	$3160\left(\mathrm{~N}^{1}-\mathrm{H}\right), 3040$ br $\left(\mathrm{N}^{4}-\mathrm{H}\right), 1687$ $\left(\mathrm{C}^{2}=\mathrm{O}\right), 1606 \mathrm{br}(\mathrm{CH}-\mathrm{C}=\mathrm{O})$	$\begin{aligned} & 3.77 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 6.86 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=), 6.85-7.97 \mathrm{~m}\left(8 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), \\ & 11.81 \mathrm{~s}(1 \mathrm{H}, 1-\mathrm{H}), 13.45 \mathrm{~s}(1 \mathrm{H}, 4-\mathrm{H}) \end{aligned}$
IId	$3200\left(\mathrm{~N}^{1}-\mathrm{H}\right), 3040 \mathrm{br}\left(\mathrm{N}^{4}-\mathrm{H}\right), 1698$ ($\mathrm{C}^{2}=\mathrm{O}$), $1608 \mathrm{br}(\mathrm{CH}-\mathrm{C}=\mathrm{O})$	$\begin{aligned} & 6.86 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}=), 7.10-7.50 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 8.30 \mathrm{~d}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }},\right. \\ & A B \text { system }), 12.10 \mathrm{~s}(1 \mathrm{H}, 1-\mathrm{H}), 13.93 \mathrm{~s}(1 \mathrm{H}, 4-\mathrm{H}) \end{aligned}$
IIg	$3160\left(\mathrm{~N}^{1}-\mathrm{H}\right), 3020$ br $\left(\mathrm{N}^{4}-\mathrm{H}\right), 1701$ ($\mathrm{C}^{2}=\mathrm{O}$), $1610 \mathrm{br}(\mathrm{CH}-\mathrm{C}=\mathrm{O})$	
IIIa	$\begin{aligned} & 3050 \mathrm{br}(\mathrm{~N}-\mathrm{H}) ; 1685\left(\mathrm{C}^{6}=\mathrm{O}\right) ; 1670,1656 \\ & \left(\mathrm{C}^{7}=\mathrm{O}, \mathrm{C}^{15}=\mathrm{O}\right) \end{aligned}$	$6.90 \mathrm{~s}(1 \mathrm{H}, 14-\mathrm{H}), 7.15-7.80 \mathrm{~m}\left(11 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.96 \mathrm{~d}(2 \mathrm{H}, o-\mathrm{H}$ in $\mathrm{Ph}, J=7.3 \mathrm{~Hz}$), 12.58 br.s ($2 \mathrm{H}, 9-\mathrm{H}, 16-\mathrm{H}$)
IIIb	$\begin{gathered} 3110 \mathrm{br}(\mathrm{~N}-\mathrm{H}), 1680\left(\mathrm{C}^{6}=\mathrm{O}\right), 1670\left(\mathrm{C}^{7}=\mathrm{O},\right. \\ \left.\mathrm{C}^{15}=\mathrm{O}\right) \end{gathered}$	$\begin{gathered} 2.35 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.87 \mathrm{~s}(1 \mathrm{H}, 14-\mathrm{H}), 7.21-7.57 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), \\ 7.85 \mathrm{~d}(2 \mathrm{H}, o-\mathrm{H} \text { in Tol, } J=8.2 \mathrm{~Hz}), 12.55 \mathrm{br} . \mathrm{s}(2 \mathrm{H}, 9-\mathrm{H}, \end{gathered}$ 16-H)
IIIc	$\begin{gathered} 3120 \mathrm{br}(\mathrm{~N}-\mathrm{H}), 1670\left(\mathrm{C}^{6}=\mathrm{O}\right), 1660\left(\mathrm{C}^{7}=\mathrm{O},\right. \\ \left.\mathrm{C}^{15}=\mathrm{O}\right) \end{gathered}$	$\begin{aligned} & 3.65 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 6.92 \mathrm{~s}(1 \mathrm{H}, 14-\mathrm{H}), 7.05-7.92 \mathrm{~m}\left(12 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) \text {, } \\ & 12.11 \text { br.s }(2 \mathrm{H}, 9-\mathrm{H}, 16-\mathrm{H}) \end{aligned}$
IIId	$\begin{gathered} 3110 \mathrm{br}(\mathrm{~N}-\mathrm{H}), 1694\left(\mathrm{C}^{6}=\mathrm{O}\right), 1671\left(\mathrm{C}^{7}=\mathrm{O},\right. \\ \left.\mathrm{C}^{15}=\mathrm{O}\right) \end{gathered}$	
IIIe	$\begin{aligned} & 3040 \mathrm{br}(\mathrm{~N}-\mathrm{H}) ; 1698\left(\mathrm{C}^{6}=\mathrm{O}\right) ; 1686,1670 \\ & \left(\mathrm{C}^{7}=\mathrm{O}, \mathrm{C}^{15}=\mathrm{O}\right) \end{aligned}$	
IIIf	$\begin{aligned} & 3070 \mathrm{br}(\mathrm{~N}-\mathrm{H}), 1686\left(\mathrm{C}^{6}=\mathrm{O}\right), 1665\left(\mathrm{C}^{7}=\mathrm{O},\right. \\ & \left.\mathrm{C}^{15}=\mathrm{O}\right) \end{aligned}$	$\begin{aligned} & 2.36 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.65 \mathrm{~d}(1 \mathrm{H}, o-\mathrm{H} \text { in } \mathrm{Ph}, J=7.3 \mathrm{~Hz}), 6.90 \mathrm{~s}(1 \mathrm{H}, \\ & 14-\mathrm{H}), 7.10-7.67 \mathrm{~m}\left(14 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.90 \mathrm{~d}(2 \mathrm{H}, o-\mathrm{H} \text { in Tol, } J= \\ & 8.2 \mathrm{~Hz}, 12.55 \mathrm{br} . \mathrm{s}(2 \mathrm{H}, 9-\mathrm{H}, 16-\mathrm{H}) \end{aligned}$
IIIg	$\begin{aligned} & 3080 \mathrm{br}(\mathrm{~N}-\mathrm{H}), 1697\left(\mathrm{C}^{6}=\mathrm{O}\right), 1680\left(\mathrm{C}^{7}=\mathrm{O},\right. \\ & \left.\mathrm{C}^{15}=\mathrm{O}\right) \end{aligned}$	

test for enolic hydroxy group with an alcoholic solution of iron(III) chloride.

The IR spectra of compounds IIIa-IIIg (Table 2) contain absorption bands due to stretching vibrations of the NH groups (a broad band in the region 3040$3110 \mathrm{~cm}^{-1}$) lactam $\mathrm{C}^{6}=\mathrm{O}$ carbonyl group (1680$1698 \mathrm{~cm}^{-1}$), and ketone $\mathrm{C}^{7}=\mathrm{O}$ and amide carbonyl $\mathrm{C}^{15}=\mathrm{O}$ groups ($1656-1686 \mathrm{~cm}^{-1}$). In the ${ }^{1} \mathrm{H}$ NMR spectra of IIIa-IIIg (Table 2) we observed signals from protons in the aromatic rings and CH_{3} and $\mathrm{CH}_{3} \mathrm{O}$ groups attahced thereto, a singlet from the secondary amino group proton $\mathrm{N}^{14} \mathrm{H}$ at $\delta 6.87-6.92 \mathrm{ppm}$, and a downfield broadened signal from protons of the amide group $\mathrm{N}^{16} \mathrm{H}$ (in IIIa-IIIc) and enamino group N^{9} at $\delta 12.11-12.58 \mathrm{ppm}$. The position of the $\mathrm{N}^{14} \mathrm{H}$ signal is very consistent with our previous data for
substituted 4-aroyl-5-arylaminopyrrol-2-ones, products of arylamine addition at C^{5} of 4-aroyl-2,3-dihydropyr-role-2,3-diones [8].

The IR and ${ }^{1} \mathrm{H}$ NMR parameters of compounds IIIa-IIIg agree well with those reported for substituted 1-aryl-1,2,3,5,10,10a-hexahydropyrrolo[2,3-b][1,5]benzodiazepine-2,3-diones [7], which were obtained by reaction of o-phenylenediamine with monocyclic 4-acyl-1-aryl-2,3-dihydropyrrole-2,3-diones via successive nucleophilic attack first at C^{5} and then at the acyl carbonyl carbon atom of the substituent in position 4.

The UV spectra of 0.0003 M solutions of IIIa, IIIb, and IIIe in dioxane (see Experimental) are characterized by the presence of two absorption bands above $300 \mathrm{~nm}, \lambda_{\text {max }}, \mathrm{nm}(\log \varepsilon)$: IIIa: 341 (3.83), 432

Fig. 1. Charges on atoms (in the numerator) and coefficients of $2 p_{z}$-AO in the LUMO (in the denominator) of molecule Ia.
(3.81); IIIb: 348 (3.81), 428 (3.80); IIIe: 340 (3.78), 427 (3.77). The UV spectra of IIIa, IIIb, and IIIe are very similar to each other and also to those of model compounds, substituted 1,4-diaryl-10a-methoxycar-bonyl-1,2,3,5,10,10a-hexahydropyrrolo[2,3-b][1,5]-benzodiazepine-2,3-diones IVa-IVe [6] and 1-butyl-4,10-diphenyl-1,2,3,5,10,10a-hexahydropyrrolo[2,3-b]-[1,5]benzodiazepine-2,3-dione (V). The structure of compound \mathbf{V} was proved by the X-ray diffraction data [8]. Compounds IVa-IVe and \mathbf{V} display two absorption bands in the UV spectra, $\lambda_{\text {max }} 348-355 \mathrm{~nm}$ $(\log \varepsilon 3.85-3.88)$ and $417-418 \mathrm{~nm}(\log \varepsilon 3.83-3.93)$ (IVa-IVe) [7]; $351(\log \varepsilon 3.76)$ and 460 nm $(\log \varepsilon 3.83)(V)[9]$.

IVa-IVe

V

IV, $\mathrm{X}=\mathrm{Y}=\mathrm{H}(\mathbf{a}) ; \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{Me}(\mathbf{b}) ; \mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{H}(\mathbf{c})$; $\mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{H}(\mathbf{d}) ; \mathrm{X}=\mathrm{NO}_{2}, \mathrm{Y}=\mathrm{H}(\mathbf{e})$.

In order to explain the direction of primary nucleophilic attack on compounds Ia-Ig we performed AM1 semiempirical quantum-chemical calculations of molecule Ia with full geometry optimization using GAUSSIAN-94W software [10]. The results are shown in Fig. 1. According to the calculations, the most electron-deficient atoms are $\mathrm{C}^{1}, \mathrm{C}^{2}, \mathrm{C}^{4}$, and C^{13},
and the greatest contribution to the lowest unoccupied molecular orbital (LUMO) is that from $2 p_{z}-\mathrm{AO}$ of $\mathrm{C}^{3 \mathrm{a}}$. This means that just the latter atom should be attacked by nucleophile under conditions of orbital control.

Presumably, in the first reaction stage o-phenylenediamine adds at $\mathbf{C}^{3 a}$ of pyrroloquinoxalinetriones \mathbf{I} to give 3a-(o-aminophenylamino)-3-benzoyl-2-hydroxy-1,3a,4,5-tetrahydropyrrolo [1,2-a]quinoxaline-1,4-diones VI, as was reported in [1] for reactions of I with monofunctional nucleophiles. The subsequent nucleophilic attack by the second amino group can be directed at the carbonyl carbon atom of the heteroring $\left(\mathrm{C}^{4}\right)$ or aroyl fragment $\left(\mathrm{C}^{13}\right)$. Figure 2 shows the results of calculation of charges on atoms in molecule VIa, performed by the above procedure with full geometry optimization. It is seen that the C^{13} atom is the most electron-deficient; moreover, the contribution of its $2 p_{z}$ - AO to the LUMO is the largest. Obviously, these factors are responsible for the attack of C^{13} by the second amino group of o-phenylenediamine, which leads to closure of benzodiazepine ring.

EXPERIMENTAL

The IR spectra were recorded on a UR-20 spectrophotometer in mineral oil. The ${ }^{1} \mathrm{H}$ NMR spectra were obtained on RYa-2310 (60 MHz), Bruker WP-80-54 (80 MHz), and Bruker AM-300 (400 MHz) spectrometers using DMSO- d_{6} as solvent and HMDS or TMS as internal reference. The UV spectra were measured on a Specord UV-Vis instrument in dioxane. The mass spectrum was run on an MKh-1320 spectrometer

Fig. 2. Charges on atoms in molecule VIa.
(70 eV). The purity of the products was checked by TLC on Silufol plates; spots were visualized with iodine vapor.

3-Aroyl-1,2,4,5-tetrahydropyrrolo[1,5-a]quino-xaline-1,2,4-triones Ic, Id, and Ig. To a solution of 0.01 mol of compound II in 50 ml of dry chloroform we added a solution of 0.01 mol of oxalyl chloride in 10 ml of dry chloroform. The mixture was refluxed for 2 h , cooled, and the precipitate was filtered off.

8-Aryl-6,7,9,14,15,16-hexahydroquinoxalino-[1,2-a]pyrrolo[2,3-b][1,5]benzodiazepine-6,7,15triones IIIa-IIIg. To a solution of 0.01 mol of compound \mathbf{I} in 50 ml of anhydrous dioxane we added
a solution of 0.01 mol of o-phenylenediamine in 20 ml of anhydrous dioxane. The mixture was refluxed for 3 min , and the precipitate was filtered off.

REFERENCES

1. Pimenova, E.V., Maslivets, A.N., Khamatgaleev, R.A., and Andreichikov, Yu.S., Russ. J. Org. Chem., 1996, vol. 32, no. 9, pp. 1357-1360.
2. Mikhailovskii, A.G., Shklyaev, V.S., and Aleksandrov, B.B., Khim. Geterotsikl. Soedin., 1990, no. 6, pp. 808-810.
3. Mikhailovskii, A.G. and Shklyaev, V.S., Khim. Geterotsikl. Soedin., 1994, no. 7, pp. 946-949.
4. Kollenz, G., Kriwets, G., Ott, W., and Ziegler, E., Justus Liebigs Ann. Chem., 1977, nos. 11-12, pp. 1964-1968.
5. Maslivets, A.N., Mashevskaya, I.V., and Andreichikov, Yu.S., Russ. J. Org. Chem., 1995, vol. 31, no. 4, pp. 569-572.
6. Mashevskaya, I.V., Makhmudov, R.R., Aleksandrova, G.A., Golovnina, O.V., Duvalov, A.V., and Maslivets, A.N., Khim.-Farm. Zh., 2001, vol. 35, no. 4, pp. 20-21.
7. Maslivets, A.N., Smirnova, L.I., Ivanenko, O.I., and Andreichikov, Yu.S., Russ. J. Org. Chem., 1995, vol. 31, no. 4, pp. 563-568.
8. Maslivets, A.N., Smirnova, L.I., and Andreichikov, Yu.S., Zh. Org. Khim., 1989, vol. 25, no. 8, pp. 1748-1753.
9. Terpetschnig, E., Ott, W., Kollenz, G., Peters, K., Peters, E.-N., and von Schnering, H.G., Monatsh. Chem., 1988, vol. 119, no. 3, pp. 367-378.
10. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewski, V.G., Ortiz, J.V., Foresman, J.B., Cioslowski, J., Stefanov, B.B., Nanayakkara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen, W., Wong, M.W., Andres, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, D.J., Binkley, J.S., Defrees, D.J., Baker, J., Stewart, J.P., Head-Gordon, M., Gonzalez, C., and Pople, J.A., Gaussian 94, Revision E.3, Pittsburgh: Gaussian, 1995.

[^0]: * For communication XLIII, see [1].
 ** This study was financially supported by the Russian Foundation for Basic Research (projects nos. 01-03-32641 and 02-03-96411).

